
-- N95- 19750

4

USING CLIPS IN THE DOMAIN OF KNOWLEDGE-BASED

MASSIVELY PARALLEL PROGRAMMING

Jiri J. Dvorak

Section of Research and Development

Swiss Scientific Computing Center CSCS
Via Cantonale, CH-6928 Manno, Switzerland

Email: dvorak©cscs, ch

Abstract

The Program Development Environment PDE is a tool for massively parallel pro-

gramming of distributed-memory architectures. Adopting a knowledge-based ap-

proach, the PDE eliminates the complexity introduced by parallel hardware with

distributed memory and offers complete transparency in respect of parallelism ex-

ploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal
task is to find an efficient parallel realization of the application specified by the

user in a comfortable, abstract, domain-oriented formalism. A large collection of

fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hi-

erarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule

modules and procedural parts, encoding expertise about application domain, paral-

lel programming, software engineering, and parallel hardware, enables a high degree

of automation in the software development process.

In this paper, important aspects of the implementation of the PDE using CLIPS
and COOL are shown, including the embedding of CLIPS with C++-based parts of

the PDE. The appropriateness of the chosen approach and of the CLIPS language

for knowledge-based software engineering are discussed.

1 INTRODUCTION

Massive parallelism is expected to provide the next substantial increase in computing

power needed for current and future scientific applications. Whereas there exists a variety

of hardware platforms offering massive parallelism, a comfortable programming environ-

ment making programming of distributed-memory architectures as easy as programming

single address space systems is still missing. The programmer of parallel hardware is

typically confronted with aspects not found on conventional architectures, such as data

decomposition, data and load distribution, data communication, process coordination,

varying data access delays, and processor topology. Approaches to a simplification of

parallel programming that have been used previously, in particular for shared-memory

architectures, are transformational and compile-time parallelization [Po188, ZC90]. How-

ever, such code-level parallelization is extremely difficult for distributed architectures.

Additionally, only a limited, fine-grain part of the opportunities for parallel execution

within the program can be detected, and the results are dependent on the programming

style of the programmer. The detection of conceptual, coarse-grain parallelism found in

220

many applications from natural sciences and engineering is in general too complicated for

current parallelization techniques.

Our Program Development Environment PDE [Dvo93, DDR94] is a tool for programming

massively parallel computer systems with distributed memory. Its primary goal is to

handle all complexity introduced by the parallel hardware in a user-transparent way.

To break the current limitations in code parallelization, we approach parallel program

development with knowledge-based techniques and with user support starting at an earlier

phase in program development, at the specification and design phase.

In this paper we focus on the expert system part of the PDE realized in the CLIPS [GR94]

language. At first, a short overview of the PDE is given. The representation and use of

knowledge is the topic of section 3. This is followed by sections showing aspects of external

interfaces, problem representation, and embedding with C++. The important role of

an object-oriented approach will be elaborated in these parts. A discussion of results,

the appropriateness of the CLIPS language, and the current state of the development

concludes the paper.

2 OVERVIEW OF THE PDE

The basic methodology of programming with the PDE consists of three steps [DR92]:

1. Problem specification using a domain-specific, high-level formalism

2. Interactive refinement and completion of the specification (if needed)

3. User-transparent generation of compilable program code

According to this three-step approach to the programming process, the program develop-

ment environment consists of the three functional components shown in Fig. 1. In a typical

Programming Assistant PA

User

Structural features Parallel framework

Computational feature_

Programming Assistant
Interfaces

Parallel hardware

/

Program Synthesizer

Figure 1: The conceptual structure of the PDE

221

session, the programmer gives an initial specification of the problem under consideration

using a programming assistant interface. Currently, we have an interface SMPAI covering

the domain of stencil-based applications on n-dimensional grids. Other interfaces are in

preparation. The initial problem specification is decomposed into the purely computa-

tional features and the features relevant for the parallel structure. The first are passed

directly to the Program Synthesizer PS, the latter go to the Programming Assistant PA.

Then, in interaction with the user, the PA extracts and completes the information needed

to determine an appropriate parallel framework. The PA is the central, largely AI-based

component of the PDE, relying on various kinds of expert knowledge. The program syn-

thesizer expands the parallel framework into compilable, hardware specific, parallel C++

or C programs.

3 REPRESENTATION OF ALGORITHMIC KNOWLEDGE

The PDE embodies a skeleton-oriented approach [Co189] to knowledge-based software

engineering. A large collection of hierarchically organized fine-grain skeletons forms the

algorithmic knowledge. The hierarchy spans from a general, abstract skeleton at the root

to highly problem-specific, optimized skeletons at the leaf-level. Skeleton nodes in the

tree represent a number of different entities. First, every non-leaf skeleton is a decision

point for the rule-based descent. The descendants are specializations of the actual node

in one particular aspect, the discrimination criterion of the skeleton. Every skeleton node

contains information about the discrimination criterion and value that leads to its selection

among the descendants of its parent node. The discrimination criteria represent concepts

from parallel programming, application domain, and characteristics the supported parallel

hardware architectures. Second, a skeleton node holds information about requirements

other than the discrimination criterion that have to be checked before a descent is done.

Third, skeleton nodes have slots for other kind of information that is not checked during

descent but that may be helpful for the user or for subsequent steps. Finally, the skeleton

nodes have attached methods or message handlers that are able to dynamically generate

the parallel framework for the problem to be solved with the chosen skeleton.

Based on these different roles, the question arises whether the skeleton knowledge base

should be built using instance or class objects. To access information in slots, a skeleton

node should be an instance of a suitable class. However, to attach specialized methods or

message-handlers at any node, skeletons have to be represented using classes. Also, the

specialization type of the hierarchy suggests the use of a class hierarchy for the skeleton

tree. We have solved the conflict by using both a class and an instance as the represen-

tation of a single skeleton node. A simplified example skeleton class is:

(defclass skel-32 (is-a init-bnd-mixin skel-5)

(pattern-match reactive)

(slot discrimination-crit (default problem-type) (create-accessor read))

(slot discrimination-value (default INIT_BND_VAL_PROBLEM)

(create-accessor read))

(multislot constraints (create-accessor read-write))

(multislot required (default (creates gridinstances_requirement))

(create-accessor read)))

The required slotholds instancesof the requirements mentioned above. Constraints are

222

an additional concept used for describing restrictions in application scope.

All instances of the skeleton nodes are generated automatically with a simple function:

(deffunction create-instances (?rootclass)

(progn$ (?node (class-subclasses ?rootclass inherit))

(make-instance ?node of ?node)))

The two basic operations on the skeletontreeare the findingofthe optimal skeleton,i.e.,

the descent in the tree,and the generation of the computational framework based on a

selected node.

3.1 Rule-based skeleton tree descent

The descent in the skeleton tree is driven by rules. Based on the discrimination criterion of

the current node, rules match on particular characteristics of the application specification

and try to derive a value for the criterion. If a descendant node with the derived criterion

value exists, it will get the candidate for the descent. The following example rule tries to

find a descendant matching the grid coloring property of the specification:

(defrule DESC::coloring-I

?obj <- (object (name [descent_object])

(curr_skel ?skel))

?inst <- (object (discrimination-crit coloring)

(discrimination-value ?c))

(test (memberS

?res <- (object

?app <- (object

=>

(class ?inst) (class-subclasses

(nr_of_colors ?c))

(is-a PAapp_class)

(results ?res))

(send ?obj put-next_skel ?inst)

(send ?obj put-decision_ok t))

(class ?skel))))

The pattern matching relies heavily on object patterns. The whole expert system is

programmed practically without the use of facts. The rule first matches a descent object,

then a skeleton which is a descendant of the current skeleton and finally the nr_of_cotors

slot of the problem specification. Note that the particular ordering of object patterns is

induced by some peculiarities of the CLIPS 6.0 pattern matching procedure. In order to

handle references to objects in other modules, it is advisable to use instance addresses

instead of instance names. CLIPS does not match objects from imported modules when

they are refered to by a name property and the module name is not explicitly given. On

the other hand, CLIPS has no instance-address property for object patterns and the form

?obj <- (object ...) does not allow ?obj to be a bound variable. So, the ordering

of patterns is restricted in such a way that first an object gets matched and then it is

verified whether it is the desired one. The consequence is probably some loss in pattern

matching efficiency.

Although our initial problem domain is sufficiently restricted and well-defined to allow a

complete, automatic descent in most cases, there is a collection of user interaction tools,

called the Intelligent Skeleton Programming Environment ISPE, ready to handle the case

223

whenthe descentstopsbeforereachinga sufficiently elaboratedskeleton.With the ISPE,
the usercan add missing information, selecta descendantnode manually, or even step
through the tree guided by the expert system. For sucha functionality, the ISPE needs
a high integration with the expert system. The rules for the descentare divided into
various modules, separating searchfor descendants,verification and actual descent in
different rule modules. The object of classdescent_class usedin the rule aboveserves
to keeptrack of the current state of descentand to coordinatebetweenthe rule modules.

3.2 Generating output from the skeleton tree

After successful selection of a skeleton node for the application under consideration, the

parallel framework can be generated. This is done by calling message-handlers attached

to all skeletons. An example parallel framework for a simple stencil problem is:

init(Grid);

FOR (iter = O; iter < nr_of_iterations; iter++)

FOR (color = 0; color < 3; color++) DO

INTERACTION

fill_buf(Grid, w_obuf, west, color);

Exchange(e_ibuf, east, w_obuf, west);

scatter_buf(Grid, e_ibuf, east, color);

DO

, ° ° • •

END;

CALCULATION

update(Grid,

END;

ENDFOR;

ENDFOR;

finish(Grid);

color);

The building blocks of this formalism [BG94] are communication and computation pro-

cedure calls, grouped by sequencing or iteration statements.

Object-oriented concepts are realized for optimizing the representational efficiency in the

skeleton tree. First, inheritance insures that information stored in the slots of the skeleton

nodes is passed down the tree. If from a certain point on it does not apply any more, it

can be overriden. Second, new behaviour is introduced with mixin classes. As it can be

seen in the skel-32 node shown earlier, each node has both a mixin class and the parent

class in its superclass list. In this way, it is possible to define a particular feature only

once, but to add it at various points in the tree. Finally, instead of having methods that

for each skeleton individually generate the complete parallel framework, an incremental

method combination approach has been chosen. Every method first calls the same method

of its parent node and then makes its own additions. The message-handler below shows

this basic structure:

(defmessage-handler stencil-MS-mixin generate-MS

(bind ?inst (call-next-handler))

(send ?inst put-global_vars

(creates)))

()

224

Message-handlersinstead of methodshaveto be usedfor this kind of incremental struc-
ture, asmethodsin CLIPS do not havedynamicprecedencecomputation, whereasmessage-
handlersdo. Usingmethods,the sequenceof skeletonand methoddefinitions in the source
file would be dominant for the precedenceinsteadof the classhierarchyat runtime.

4 INTERFACES AND PROBLEM REPRESENTATIONS

The expert system of the PDE has basically three interfaces to the outside. It receives

input from the problem specification tools, generates the parallel framework as output for

the program synthesizer component, and it has an interface for user interaction.

4.1 Input

In order to omit a parser written in CLIPS, the formalism for the problem specification

was chosen to be directly readable into CLIPS. A natural way to achieve this consists

in using instance-generating constructs. We have two types of constructs in the input

formalism, for example:

(make-instance global_spec of global_spec_class

(grid_const 1.0)

(dimension 2)

(problem_type BND_VAL_PROBLEM))

(stencil_spec (assign_op (grid_var f (coord 0 0))

(function_call median

(grid_var f

(grid_vat f

(grid_var f

(coord -1 0))

(coord 0 0))

(coord 1 0)))))

In the first statement above, where global properties of the application are defined, the

make-instance is part of the formalism. Obviously, reading such a construct from a file

with the CLIPS batch command generates an instance of the respective class and initial-

izes the slots. In the second case, where the stencil is defined, the instance-generating abil-

ity is not directly visible. However, for every keyword such as stencil_spec, assign_op

or grid_var, there are functions creating instances of respective classes, e.g.:

(deffunction grid_var (?name ?coord)

(bind ?inst (make-instance (gensym*) of grid_vat))

(send ?inst put-var_name ?name)

(send ?inst put-coord ?coord))

The reasons to not use make-instance in all cases are that some constructs can have

multiple entities of the same name, e.g., a stencil can have multiple assignment operations,

and additional processing that is needed by some constructs.

The lack of nested lists in CLIPS was considered as a disadvantage at the beginning,

in particular regarding the close relation between CLIPS and Lisp/CLOS. However, a

recursive list construct can be easily defined with COOL objects and instance-generation

225

functions similar to the one above. Certainly, this is not appropriate if runtime efficiency

is critical. In the course of the PDE development, the lack of lists proved to have a

positive effect on style and readability. For example, instead of using just the list (-1

1 2) for a 3-D coordinate, using the construct (coord -1 1 2) creates an instance of

a specialized class for coordinate tuples. Such an instance can be easier handled than a

list and appropriate methods or message-handlers can be defined. The whole problem

representation after reading the specification input is present in a number of nested,

interconnected instances of respective classes.

4.2 Output

The result of the generation of the parallel framework is a problem representation by means

of a number of instances, much in the sense of the input representation shown above. The

writing of an output file as shown in section 3.2 is done with message-handlers attached

to each of the relevant problem representation classes, e.g., a for-loop is written by:

(defmessage-handler for_loop_class write-out (?stream)

(printout ?stream " FOK (" ?self:varname " = " ?self:from
,'. " ?self:varname " < " ?self:till

!

"" " ?self:varname "++) DO " t)

(proEn$ (?el ?self :subs)

(send ?el write-out ?stream))

(printout ?stream " ENDFOK;" t))

5 EMBEDDING WITH C++

The global structure of the PDE consists of components written in C++, among them the

main program and the graphical user interface, and an embedded CLIPS expert system

for knowledge representation and reasoning. Additionally, two parsers use the Lex/Yacc

utilities. Whereas some components, such as the parsers, are integrated only by means of

intermediate files for input and output, the expert system is highly integrated with the

C++-based ISPE and the graphical user interface. The CLIPS dialog itself is visible to

the user through a CLIPS base window. Figure 2 shows both the CLIPS dialog window

and a browser window for graphically browsing the skeleton tree.

5.1 Data integration

Both CLIPS and C++ offer objects for the representation of data. It is therefore a

straightforward decision to use the object mechanism for the data integration between

an expert system written in CLIPS and programs written in C++. The concept for the

CLIPS-C++ integration relies on the decisions to represent common data on the CLIPS

side using COOL objects and to provide wrapper classes on the C++ side for a transparent

access to COOL objects. A class hierarchy has been built in C++ to represent CLIPS

types, including classes and instances. Access to COOL classes is needed for example in

the skeleton tree browser, where descendants of a node are only found by inspecting the

subclasses list of the node.

226

CLIPS> (PA)

descending : skeleton-type data-parallel

descending : skeleton-type stencil

descending : coloring Z
descending : decomp-dlm 2

comm-directlons : (south)
comm-dlrectlons : (west)

come-dlrections : (north)

comm-directions : (east)

n-s-symmetry : yes

e-_-symmetry : yes
descending : stencil-dlm 2

descending ; symmetric stencil

descending : max communication links dim : I
CLIPS> (output_text)
Slave definition:

loop : do till max

sync comm : north_south color 0
sync comm : east_west color 0
perform computation, color 0
sync come : north_south color 1
sync come : east_west color 1
perform computation, color I

t

stencl

lon-dlm

Figure 2: The CLIPS window and the skeleton tree browser

The C++ wrapper classes consist of an abstract class clips_type with subclasses for the

CLIPS data types integer, float, symbol, string, multifield, and for COOL classes and

instances. The class coolframe used to represent COOL instances is shown below:

class coolframe : public clips_type {

char* framename ;

public :

coolframe(char* name) ;

clips_type* get_slot(char* slotname);

int put_slot(char* slotname, clips_type* value) ;

char* class_of() ; };

The creation of a C++ frontend to a COOL instance is performed by just instantiating

the above class, giving the constructor the name of the COOL instance. Accesses to

slots have to be done by using the get_slot and put_slot member functions that refer to

functions in the CLIPS external interface [NAS93]. The class coolframe is a generic class,

usable for any COOL instance, no matter what collection of slots the COOL instance has.

A more sophisticated approach with separate members for all slots would be somewhat

more convenient, as the distinction between accessing a C++ object and accessing a

COOL object through the C++ wrapper would be completely blurred. However, defining

classes on the fly, based on the structure of the COOL instances, is not possible in C÷÷.

The chosen system with general-purpose wrapper classes is already convenient for use

in C÷+. Operators and functions in C+÷ can be overloaded to handle CLIPS data

transparently. For example, the basic mathematical operations can be overloaded to

combine C÷÷ numbers with CLIPS numbers in one expression.

Care has to be taken to not introduce inconsistencies between the data stored in CLIPS

and the C++ wrappers. To this end, the C++ interface to CLIPS does not cache any

227

information, and beforeperformingany accessthrough the CLIPS external interface it is
verified whether the COOL object to beaccessedstill exists.

5.2 Functional integration

The goal with functional integration is to achieve fine-grain control over the reasoning

in the expert system from C++-based components whenever needed. For example, it is

sometimes desirable to check whether one single descent from the current skeleton node is

possible. Or, the user may prefer to step manually through the tree, getting support from

the expert system. The detailed control needed for such tasks has been achieved with a

partitioning of the rules into a number of rule modules. Then, the C÷+ component can

set the focus to just the rule system desired and start the reasoning.

Two basic means to interact from the C÷+ components to the CLIPS expert system

exist in the PDE. First, a C÷÷ program can call any of the C functions from the CLIPS

external interface. This happens without user visibility in the CLIPS dialog window, and a

return value can be obtained from the call. Second, thanks to the graphical user interface

written in C÷÷, the C-i-t-÷ program can directly write to the dialog window in such a

way that CLIPS thinks it received input at the command line. Using this alternative, no

return value can be passed back to the C++ component, but the interaction is visible to

the user in the window. It is thus most suited to starting the reasoning or other functions

that produce output or a trace in the dialog window.

6 CONCLUSIONS

The realization of the parallel program development environment PDE has successfully

achieved the primary goal of making parallel programming as simple as sequential pro-

gramming within the initial problem domain of stencil-based applications. Moreover,

thanks to programming environment support spanning from the design level up to au-

tomated code generation and thanks to the reuse of important software components,

parallel programming with the PDE can be considered substantially simpler and more

reliable than sequential programming in a common procedural language. Apart from

the high-level, domain-oriented approach to programming, the PDE offers to the user

efficiency preserving portability of software across platforms, reuse of critical software

components, and a flexible and comfortable interface.

With a focus on the parts realized using CLIPS, various aspects of the implementation

of our knowledge-based parallel program development tool PDE have been shown in this

paper. CLIPS in its current version 6.0 [NAS93] proved to have some critical properties

making it particularly well-suited for the use within the PDE. Of highest importance

are probably the object-oriented capabilities of CLIPS, enabling flexible interfaces to

the outside, appropriate representations of knowledge and intermediate problem states,

and, together with the CLIPS external interface, a convenient embedding with the C++

components of the PDE. CLIPS is well suited for a rapid prototyping approach to system

development, in particular due to the flexibility that the object-oriented mechanism can

offer. The PDE development is currently in the fourth prototype. Apart from the first

throw-away prototype done in CLOS [BDG+88], each prototype reuses large parts of the

previous one, adding completely new components or new functionality.

228

The problems with the CLIPS language encountered during the PDE development relate

in part to the resemblance of CLIPS to CLOS. Examples are the lack of the lists in the

sense of Lisp, the static precedence determination for methods, or the inability to pass

methods or functions as first-class objects. But alternatives offering similar functionality

have been found in all cases. Apart from such CLOS-like items, a suggestion for improve-

ment of the CLIPS language based on our experience is to focus more on object patterns

in rules than on facts or templates. An useful extension of the CLIPS external interface,

based on the popularity of the C++ programming language, would be the definition and

documentation of a C++ frontend for COOL objects.

REFERENCES

[BDG+88] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and D.A.

Moon. Common Lisp Object System Specification. X3J13 Document 88-002R,

1988.

[BG94] H. Burkhart and S. Gutzwiller. Steps towards reusability and portability in

parallel programming. In K.M. Decker and R.M. Rehmann, editors, Program-

ming Environments for Massively Parallel Distributed Systems, pages 147 -

157. Birkh_iuser Verlag, Basel, 1994.

[Co189] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-

tation. MIT Press, Cambridge, MA., 1989.

[DDR94] K.M. Decker, J.J. Dvorak, and R.M. Rehmann. A knowledge-based scientific

parallel programming environment. In K.M. Decker and R.M. Rehmann, ed-

itors, Programming Environments for Massively Parallel Distributed Systems,

pages 127 - 138. Birkhiiuser Verlag, Basel, 1994.

[DR92] K.M. Decker and R.M. Rehmann. Simple and efficient programming of parallel

distributed systems for computational scientists. Technical Report IAM-92-

019, IAM, University of Berne, 1992.

[Dvo93] J. Dvorak. An AI-based approach to massively parallel programming. Tech-

nical Report CSCS-TR-93-04, Swiss Scientific Computing Center CSCS, CH-

6928 Manno, Switzerland, 1993.

[GR94] J. Giarratano and G. Riley. Expert Systems: Principles and Programming.

PWS Publishing, Boston, MA., 2nd. edition, 1994.

[NAS93] NASA Lyndon B. Johnson Space Center. CLIPS Reference Manual, 6.0 edi-

tion, 1993.

[Po188] C.D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Aca-

demic Publishers, Boston, 1988.

[zc90] H. Zima and B. Chapman. Supercompilers for parallel and vector computers.

Addison-Wesley, Workingham, 1990.

229

